
Applicability of Tensor Factorization methods for the problem
of Predicate Induction

Madhav Nimishakavi
Indian Institute of Science

Bangalore, India
madhav@csa.iisc.ernet.in

Uday Singh Saini
Indian Institute of Science

Bangalore, India
uday.s.saini@gmail.com

Partha Talukdar
Indian Institute of Science

Bangalore, India
ppt@cds.iisc.ac.in

Abstract

Given a set of documents from a spe-
cific domain (e.g., medical research
journals), how do we automatically
identify the predicates, i.e., cate-
gories (e.g., Patient, Surgery) and re-
lations (e.g., undergoSurgery(Patient,
Surgery)), necessary to understand the
given set of documents? We refer
to this problem as Predicate Induc-
tion (PI). Open Information Extrac-
tion (OIE) techniques aim at extract-
ing surface-level text triples of the form
(John, had an, Angioplasty). While
such OIE triples provide instances of
predicates of interest, they don’t in-
duce the yet unknown predicates them-
selves. Tensors provide a natural rep-
resentation for such triples, and factor-
ization of such tensors provide a plausi-
ble solution for the PI problem. While
many such factorization techniques ex-
ist in the literature (e.g., PARAFAC,
Tucker, RESCAL, etc.), they haven’t
been applied to the problem of Predi-
cate Induction from unstructured text.
We fill this gap in this paper and
present a comprehensive comparison of
effectiveness of various tensor factoriza-
tion methods for the PI problem. We
report our findings on multiple real-
world datasets. We hope to make all
datasets and code publicly available
upon publication of the paper.

1 Introduction

In order to understand the example text frag-
ment shown below,

. . . John had angioplasty last Tuesday. . . .

a Natural Language Understanding (NLU)
should be able to infer that this text snippet
provides instantiations of two types of pred-
icates: (1) categories: Patient, Surgery ; and
(2) relation: undergoSurgey(Patient, Surgery).
Once such predicates have been identified, re-
cent advances in ontological Knowledge Graph
(KG) construction methods (Dong et al., 2014;
Mitchell et al., 2015) may be used to identify
large number of instances of such predicates
from Web-scale datasets. But the challenge
is how one could identify such predicates and
their signatures automatically from unstruc-
tured text without any supervision? We refer
to this problem as Predicate Induction (PI).

Open Information Extraction (OIE) tech-
niques (Etzioni et al., 2011) aim to ex-
tract surface-level triples from unstructured
text. For example, given the sentence shown
above, an OIE system will extract the triple
(John, had, angioplasty). Over the last few
years, OIE has emerged as a preferred way to
identify parts of the sentence containing fac-
tual knowledge, and store that in the form of
a triple. However, given such triples, it is not
clear how one might go about identifying the
predicates, i.e., categories and relations among
those categories generating such triples.

Tensors are a higher order generalization of
matrices and they provide a natural way to
represent the triple data generated by OIE ex-
tractions. Tensor factorization is an exten-
sively studied area with several well known
methods, e.g., PARAFAC, Tucker Decomposi-
tion, RESCAL (Kolda and Bader, 2009). Such
techniques have in fact also been applied to
factorize Knowledge Graphs whose ontology
is already known (Nickel et al., 2012). Ap-
plying such tensor factorization methods over
OIE triples to identify predicates is a natural
approach, but one that has not been explored

so far. In this paper, we fill this gap and make
the following contributions:

� We present a comprehensive comparison
of multiple tensor factorization techniques
for the Predicate Induction (PI) problem.
To the best of our knowledge, this is the
first such study of its kind.

� We perform our experiments on multi-
ple real-world datasets and report the in-
sights obtained in the process. Among
others, we identify the need for non-
negative factorization in order to induce
higher-quality inductions.

� We finish the paper by identifying a set of
open challenges in this important problem
of predicate induction. We hope to make
all the datasets and code publicly avail-
able upon publication of the paper.

Our goal in this paper is not to propose yet
another new method, but to study the appli-
cability of tensor factorization methods for the
problem of Predicate Induction.

2 Related Work

A method for inducing (binary) relations and
the categories they connect was proposed
by (Mohamed et al., 2011). However, in
that work, categories and their instances were
known a-priori. In contrast, in case of PI, both
categories and relations are to be induced.

Predicate Induction can be considered as a
sub problem of Ontology Induction (Velardi
et al., 2013), but instead of building a full
fledged hierarchy we are particularly inter-
ested in finding signatures of predicates and
shallow relations among them. Even though
tensors provide a natural representation they
have not been explored for these class of prob-
lems, so we try address those gaps in this pa-
per.

A method for canonicalizing noun and rela-
tion phrases in OIE triples was recently pro-
posed in (Galárraga et al., 2014). The main
concentration of this approach is to cluster lex-
ical variants of a single entity or relation. This
is not directly relevant for PI, as they are in-
terested in grouping entities of the same type
into one cluster, and use that to induce rela-
tion schema.

(Chambers, 2013) propose a method for
event schema induction, which is the task of
learning high-level representations of complex
events and their entity roles from unlabeled
text. This approach is heavily dependent on
Named Entity Recognition (NER) and hence
may not be scalable for every domain. Our
focus in this paper is on unsupervised tensor
factorization methods.

Due to their flexibility of representation
and effectiveness, tensor factorization meth-
ods have seen increased application in Knowl-
edge Graph (KG) related problems over the
last few years. Methods for decomposing on-
tological KGs such as YAGO (Suchanek et al.,
2007) were proposed in (Nickel et al., 2012;
Chang et al., 2014). In these cases, predicates
are known in advance, while we are interested
in inducing such predicates from unstructured
text. Gigatensor, a scalable implementation of
PARAFAC tensor factorization was proposed
in (Kang et al., 2012).

3 Tensor Factorization Methods

In this section, we briefly review two popular
tensor factorization methods and their non-
negative variants which are compared in the
experiments of this paper. All these methods
take a tensor, X , as an input which is a rep-
resentation of the triples extracted from the
corpus. We first describe how to construct the
tensor from OIE triples, and describe various
factorization methods that operate over this
tensor.

3.1 Tensor Construction

Tensor is constructed from a tab delimited file
of triples. For PARAFAC, an element xijk of
the tensor X is an element corresponding to
the triple formed by ith subject, jthpredicate
and kth object , score (scoring mechanism is
explained in the next section) corresponding
to this triple is stored in the tensor. If the
triple with that combination is not present in
the input file then zero is stored in tensor at
that index.

Tensor construction for RESCAL is differ-
ent from that of PARAFAC, here an element
xijk refers to triplet formed by ith noun phrase
, jth noun phrase and kth verb phrase. In
PARAFAC, subject noun phrases and object

Figure 1: Decomposition of a Tensor by PARAFAC and RESCAL where (John, undergo,
Surgery) is a triple.

noun phrases have separate indexing unlike
for RESCAL in which all the noun phrases
have same indexing. Figure 1 illustrates the
decomposition of input tensor performed by
PARAFAC and RESCAL.

3.2 Notations

Following are the notations used in this paper

Notation Definition

X A Tensor
X(n) Mode-n matricization of a tensor

◦ Outer product
� Khatri-Rao product
⊗ Kronecker product
∗ Hadmard product
A† Pseudoinverse of A

Table 1: Notations

3.3 PARAFAC

PARAFAC (or CANDECOMP) (Harshman,
1970) decomposes the tensor into a sum
of component rank-one tensors. Let X ∈
RI×J×K , it will be decomposed to

X ≈
R∑

r=1

ar ◦ br ◦ cr

where R is a positive integer and ar ∈ RI , br ∈
RJ and cr ∈ RK for r = 1, ..., R. This can be
written elementwise as

xijk =

R∑
r=1

aibjck, ∀1 ≤ i ≤ I,

1 ≤ j ≤ J, 1 ≤ k ≤ K

Goal of PARAFAC is to compute a decompo-
sition with R components that best approxi-
mate the given tensor, X i.e., to find

min
X̂
‖ X − X̂ ‖ with

X̂ =
R∑

r=1

λr × ar ◦ br ◦ cr = [λ;A,B,C]

Alternating Least Square (ALS) (Harshman,
1970) can be used to solve the factorization ,
which fixes B and C to solve A, then fixes A
and C for B, then fixes A and B to solve for C
and continues to repeat the entire procedure
until some convergence criterion is satisfied.
Update for A is as shown below:

Â = X(1)(C �B)(CTC ∗BTB)†

Updates for B and C are defined similarly.
We used MATLAB Tensor Toolbox Version
2.6 (Bader et al., 2015) for computing the fac-
torization by ALS.

3.4 Non-Negative PARAFAC
(NN-PARAFAC)

The objective of Non-Negative PARAFAC
(NN-PARAFAC) is same as PARAFAC, with
the additional non-negative constraints A ≥
0, B ≥ 0, C ≥ 0. Non-Negative PARAFAC
uses the NMU algorithm (Lee and Seung,
2000) for updates. We used MATLAB Ten-
sor Toolbox Version 2.6 (Bader et al., 2015)
to compute the factorization using NMU up-
dates.

3.5 RESCAL

RESCAL (Nickel et al., 2011) decomposes a
tensor, X ∈ Rn×n×m, into a factor matrix A ∈
Rn×r and a core tensor R ∈ Rr×r×m. Where
r is the number of latent factors. Each slice
Xk, k = 1, ...,m of the X can be interpreted as
an adjacency-matrix between n entities of the
relation and each slice is factored into

Xk = ARkA
T , ∀k = 1, ...,m

The factor matrices A and Rk can be com-
puted by solving the regularized minimization
problem

min
A,Rk

f(A,Rk) + g(A,Rk)

where

f(A,Rk) =
1

2
(
∑
k

‖ Xk −ARkA
T ‖2F)

and g is the following regularized term

g(A,Rk) =
1

2
(‖ A ‖2F +

∑
k

‖ R ‖2F)

The updates for A and Rk are given by

A← [
m∑
k=1

XkAR
T
k +XT

k ARk][
m∑
k=1

Bk+Ck+λI]−1

where

Bk = RkA
TART

K , Ck = RT
kA

TARK

and Rk ← (ZTZ + λI)−1Zvec(Xk)

where Z = A⊗A

3.6 Non-Negative RESCAL
(NN-RESCAL)

Non-Negative Rescal (Krompaß et al.,
2013)implements non-negative tensor decom-
positions based on RESCAL by employing
multiplicative update rules for A and R.
Objective function of Non-Negative Rescal is
same as that of RESCAL, which is

min
A,Rk

(
∑
k

‖ Xk − ARkA
T ‖2F) + (λA ‖ A ‖2F

+λR
∑
k

‖ R ‖2F)

The updates are given by

A← A•

∑
k

XkAR
T
k +XT

k ARk

A([
∑
k

RkATART
k +RT

kA
TARk] + λAI)

Rk ← Rk •
ATXkA

ATARkATA+ λRRk

Table 2: Datasets used in the experiments.
Dataset # Documents # Triples

Ohsumed 50,216 535,784

NYT
Sports

20,940 499,068

4 Experiments

4.1 Experimental Setup

Datasets: We used two datasets for the ex-
periments in this paper, they are summarized
in Table 2.

� Ohsumed: The Ohsumed collection is
a subset of the MEDLINE database,
which is a bibliographic database of peer-
reviewed medical literature maintained by
the National Library of Medicine. The
collection contains 50,216 medical ab-
stracts.

� NYT Sports: The New York Times
annotated corpus contains over 1.8 mil-
lion articles written and published by the
New York Times between 1987 and 2007.
For our experiments we considered a col-
lection of 20,940 documents related to
Sports category published between 2005
and 2007.

Open IE Triple Extraction: We used
Open IE v4.01 to extract triples from the
datasets described above. Number of triples
extracted from each dataset is shown in Ta-
ble 2. Following processing steps were carried
out during and after triple extraction:

� Stanford CoreNLP (Manning et al., 2014)
was used for coreference resolution. This
was performed over the raw corpus before
OIE extraction to make sure there were
no pronouns in triple arguments.

� Justeson and Katz filter (Justeson and
Katz, 1995) was applied over triple ar-
guments to extract base NPs from argu-
ments with extraneous tokens.

� Duplicate triples were removed, and verb
phrases in the triples were lemmatized.

1Open IE v4.0: http://knowitall.github.io/openie/

Table 3: Fit comparison between binary
and triple-scored tensor decomposition by
RESCAL in the Ohsumed triple tensor. Us-
ing triple scores results in better decomposi-
tion (higher fit). [see Section 4.2]

Dimensions
(R)

Binary Triple-
scored

25 0.031 0.053
50 0.044 0.069
75 0.048 0.082
100 0.062 0.084
125 0.065 0.092

All the numbers in triple arguments were
normalized with a keyword < NUM >.

Evaluation Metric: Given tensor X , let
X̂ be its reconstruction generated from the de-
composition produced by one of the methods
described in Section 3. We measure the qual-
ity of this reconstruction using the following
fit function.

Fit(X , X̂) = 1− ||X − X̂ ||F
||X ||F

(1)

where ||X ||F =
√∑

i,j,k x
2
i,j,k is the Frobenius

norm.

4.2 Binary vs Triple-scored Tensor

We note that the value of a triple represented
by the indices (i, j, k) in the tensor X is given
by the cell xi,j,k. We consider two scoring
schemes:

� Binary: In this case, the tensor cell value
corresponding to any valid triple is 1, and
0 otherwise, i.e., xi,j,k ∈ {0, 1}, ∀i, j, k

� Triple-scored: All triples are not
equally likely, and the same is true for the
arguments in each triple. We consider the
following triple scoring scheme:

xi,j,k = Γ− log(#(a1)×#(a2))

−len(a1)− len(a2)

where a1 and a2 are the first and sec-
ond arguments of the triple, #(a1) is fre-
quency of a1 in the triple set, Len(a1) is
the string length of argument a1, and Γ
is a positive number added to make the

Table 4: Fit comparison between RESCAL
& NN-RESCAL for Ohsumed data. Non-
negativity results in reduced Fit across all la-
tent ranks (R), but it improves latent factor
interpretability. See Section 4.4 for details.
Rank
(R)

NN-
RESCAL

RESCAL Fit
Change
(%)

25 0.049 0.062 22 %
50 0.068 0.081 17%
75 0.079 0.093 17 %
100 0.082 0.103 24 %
125 0.091 0.111 21 %

score positive. This score is intended to
discount triples with very frequent argu-
ments, and also triples with argument seg-
mentation errors which usually result in
long argument string.

Experimental results comparing factoriza-
tion of binary vs triple-scored tensors is pre-
sented in Table 3. Across all settings, we find
that using triple scores results in better factor-
ization (higher fit). Unless otherwise stated,
we use triple scoring in all subsequent experi-
ments.

4.3 Hyperparameter Sensitivity

We tested the tensor factorization methods
over a wide range of hyperparameter val-
ues, but didn’t find them to be sensitive to
such variation. For example, in case of NN-
RESCAL, the Fit changed only from 0.049 to
0.051 when the hyperparameter varied from
0.01 to 1 (two orders of magnitude change).

4.4 Result #1: Non-Negativity
improves Interpretability

In this section, we are interested in evaluat-
ing the importance of non-negative constraints
during tensor decomposition of OIE triples.
For this, we compared the Fit scores of the
RESCAL and NN-RESCAL methods on the
Ohsumed triple tensor. Results are shown in
Table 4. From this table, we observe that
RESCAL results in a better decomposition
across all latent ranks. We observe similar
trends in the NYT dataset and while com-
paring PARAFAC with NN-PARAFAC. How-
ever, we find that inspite of the reduced fit

due to the non-negativity constraints, it ul-
timately results in more interpretable latent
factors. Additionally, non-negativity helps us
overcome the overgeneration problem which
we describe next.

Overcoming overgeneration using
non-negativity: To understand the problem
of overgeneration and its relationship to
interpretability, let us consider the example of
a specific triple (patients, receive, chemother-
apy) from the Ohsumed dataset. We first
remind the reader that RESCAL decomposes
the slice of tensor X corresponding to textual
relation receive as

Xreceive ∼ ARreceiveA
T

From this decomposition, we find that
Rreceive(22, 25) is much higher than any other
cell in R, followed by Rreceive(22, 21). This
means that the receive relation induced by
this decomposition connects the 22nd column
of A (latent factor) with the 25th column of
A. Similarly, between 22nd and 21st columns
of A.

Looking at the columns of A (latent fac-
tors), we find that patients is present with high
positive score in columns 22 and 25. Since,
Rreceive(22, 25) is active, because of this dual
presence, the decomposition will end up gen-
erating the tuple (patients, receive, patients),
a case of over-generation, as this triple is
not present in the input tensor X . Thus to
stop this invalid tuple from getting generated,
RESCAL will have to compensate for this
overproduction by generating the same tuple
with a corresponding negative score. In fact,
we found this exactly to be the case! We ob-
served that patients is also active in latent fac-
tor 21, but with a high negative score. From
above, we know that Rreceive(22, 21) is also ac-
tive, and hence this generates the (patients, re-
ceive, patients) tuple but this time with a neg-
ative score to counter for the overgeneration.
Thus, due to the relatively under-constrained
nature, RESCAL ends up overgenerating and
then compensating for it. Unfortunately, this
dilutes the interpretability of the latent factors
as any phrase may be added to a latent factor
as long as this incorporation may be negated
through some other factor.

This prompted us to look at the in-
terpretability properties of RESCAL’s non-

negative counterpart, NN-RESCAL. Indeed,
we find that NN-RESCAL doesn’t suffer from
the overgeneration problem as it doesn’t have
the option of having negative entries in la-
tent factors, and thereby no overgeneration as
well as no compensation for it. Non-negativity
forces the model to commit to specific seman-
tics of the latent factors, as it has lesser de-
grees of freedom. We indeed find that the la-
tent factors of A in case of NN-RESCAL are
significantly more interpretable than that of
RESCAL. As we shall see in Section 4.6, this
increased interpretability allows for more num-
ber of accurate predicates to be induced.

Similar benefits of non-negativity on inter-
pretability have also been observed in matrix
factorization (Murphy et al., 2012).

4.5 Result #2: PARAFAC can only
induce small number of predicates

A very popular heuristic deployed to find an
appropriate rank of a PARAFAC decomposi-
tion is a diagnostic measure called CorConDia
(Bro and Kiers, 2003). Finding an appropriate
number for rank of a PARAFAC decomposi-
tion is a fairly practical step to take if one is to
exploit the uniqueness property of PARAFAC
(Kolda and Bader, 2009). We used the Cor-
ConDia implementation given by (Papalexakis
and Faloutsos, 2015). 2

For varying rank, a high CorConDia score
(say, 90+) implies that PARAFAC is a good
model at that rank for the data. However,
rank of the first big drop in CorConDia score
indicates the maximum rank that may be
modeled using PARAFAC, any higher rank
modeling should be performed using Tucker
models, such as RESCAL. CorConDia scores
of PARAFAC decompositon of the Ohsumed
dataset is shown in Table 5. From this we
find that PARAFAC is only able to induce
maximum 3 predicates. We find this to be a
constant problem with PARAFAC across mul-
tiple datasets. This suggests exploration of
Tucker models such as RESCAL for this prob-
lem. This analysis was one of the main motiva-
tions for us to explore RESCAL/Tucker after
PARAFAC decomposition.

2
http://www.cs.cmu.edu/∼epapalex/src/efficient corcondia.zip

Table 5: CorConDia scores of PARAFAC on Ohsumed decomposition. The first big drop in
CorConDia score gives an estimate of the number of valid latent factors in the decomposition.
This number is 4 in this case. In general, we find PARAFAC to be able to support on a small
number of ranks in our data decompositions. See Section 4.5 for details.

Rank 1 2 3 4 5 6 7 8 9

CorConDia Score 100 100 99.9 -5.0 53.9 -275 -1447 -39541.7 -65235. 8

Ohsumed NYT

Method Predicted
#rel in-
stances

Avg. #
correct
instances

Accuracy Predicted
#rel in-
stances

Avg. #
correct
instances

Accuracy

PARAFAC 25 10 40% 25 3.5 14%

NN-PARAFAC 25 15.33 61% 25 8 32%

RESCAL 20 2.67 13% 12 1 8.3%

NN-RESCAL 20 7.68 38.3% 10 5.5 55%

Table 6: Predicate induction accuracies (averaged over two human annotator judgments) pro-
duced by the four tensor factorization methods over two datasets. Accuracy of best method in
each dataset is marked in bold. See Section 4.6 for details.

4.6 Result #3: NN-RESCAL is the
most effective method for
Predicate Induction

In general, we observe that an under-
constrained model (such as PARAFAC or
RESCAL) tends to achieve higher fit value
compared to their non-negative counterparts,
viz., NN-PARAFAC and NN-RESCAL. How-
ever, this increased fit comes at a cost of pre-
diction interpretability as we shall see shortly.
In this section, we are particularly interested
in evaluating correctness of the predicate in-
stances induced by various algorithms from
the two datasets.

A human annotator was presented with the
induced relation by one of the four algorithms,
along with top ranking example words from
each of the two latent factors. The annota-
tor was asked to label the latent factors in the
context of the relation. Failure to do so, was
considered as prediction of an invalid predi-
cate. Accuracy was then collected by aver-
aging scores from annotators. Experimental
results are shown in Table 6. From this ta-
ble, even though there is no single algorithm
that performs well in all settings, we observe
that non-negativity constrained models tend
to produce more coherent predicates as op-
posed to their under-constrained alternatives.

Examples of a few relations induced by NN-

RESCAL from the NYT Sports and Ohsumed
datasets are shown in Table 7. Please note
that the argument labels in this example are
provided by the human annotators. Com-
paring NN-PARAFAC with NN-RESCAL, we
find that NN-RESCAL is able to induce much
more diverse relation predicates, compared to
NN-PARAFAC (and also PARAFAC) which
produces relations with much reduced diver-
sity (often just one or two different relations).
Due to the quality and diversity of inductions,
we consider NN-RESCAL to be the single best
method among the four alternative considered
for predicate induction.

4.7 Open Challenges

Challenge #1: Automatic labeling of the la-
tent factors is a hard problem. We tried an
approach similar to (Lau et al., 2011) using
Wikipedia category information. The label-
ing scheme worked well for some of the la-
tent factors such as [surgery, appendectomy,
laparotomy, splenectomy] for which the label
prediction was surgery, but for some of the la-
tent factors like [positive, negative, seroposi-
tive, seronegative], which can be result of a
medical test, labeling didn’t work as well. Au-
tomatic labeling of latent factors with abstract
concepts remains an open problem.

Challenge #2: While OIE triples provide a

NYT Sports Dataset

Predicted
Relation

Argument
Labels

Top Words

score
Player Carter O’neal Vince Carter
Point Num points 2 Num points Num points

left
Time Num seconds Minutes Num minutes
Game game half regulation

hit
Player Bond Johnson Lemieux
Game Num games a game three games

Ohsumed Dataset

receive
Patient patient patient children
Therapy chemotherapy adjuvant ther-

apy
desflurane

undergo
Patient NUM patients NUM patients patient
Surgery surgery cholecystectomy radical hys-

terectomy

have
Patient NUM patients NUM patients patient
Disease rash DN (Diabetic

Nepropathy)
disease

Table 7: Examples of predicates induced by NN-RESCAL from the NYT and Ohsumed datasets.
Arguments label are specified by the human annotator, everything else is induced automatically.
See Section 4.6 for more details.

convenient starting point for the Predicate In-
duction problem, a lot of the information in
the document can’t be captured using such
triples. Moreover, in many cases, the knowl-
edge captured in the triples become out of
context, thereby making them difficult to in-
terpret even by humans. Augmenting OIE
triples with more extractions from the text
documents remains an interesting open prob-
lem.

Challenge #3: Low recall of all the ten-
sor factorization methods compared remains
a concern. Even though predicate invention is
a hard problem, improving lower accuracy of
the factorization methods is also a challenge.

5 Conclusion

Predicate induction is an important problem
as it will help NLU systems. Tensors pro-
vide a natural way of representing the triples
so we experimented with two main tensor
factorization methods and their non-negative
variants. Tensor factorization methods have
been applied before for the triples from exist-
ing Knowledge bases, but no attempts were
made in open information extraction settings.
We made the first attempt in applying tensor

factorization methods for predicate induction
from OIE triples and we learned some impor-
tant insights. We demonstrated with our ex-
periments that non-negativity is a better con-
straint for interpret-ability and NN RESCAL
is best among the methods compared in terms
of interpret-ability. We also discovered some
open challenges which we would like to pursue
as part of our future work.

References

Brett W. Bader, Tamara G. Kolda, et al. 2015.
Matlab tensor toolbox version 2.6. Available on-
line, February.

Rasmus Bro and Henk A. L. Kiers. 2003. A
new efficient method for determining the num-
ber of components in parafac models. Journal
of Chemometrics, 17(5):274–286.

Nathanael Chambers. 2013. Event schema induc-
tion with a probabilistic entity-driven model. In
EMNLP, pages 1797–1807. ACL.

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and
Christopher Meek. 2014. Typed tensor decom-
position of knowledge bases for relation extrac-
tion. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1568–1579.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz,
Wilko Horn, Ni Lao, Kevin Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang.
2014. Knowledge vault: A web-scale approach
to probabilistic knowledge fusion. In Proceed-
ings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data
mining, pages 601–610. ACM.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam Mausam.
2011. Open information extraction: The second
generation. In IJCAI, volume 11, pages 3–10.

Luis Galárraga, Geremy Heitz, Kevin Murphy, and
Fabian Suchanek. 2014. Canonicalizing Open
Knowledge Bases. CIKM.

R. A. Harshman. 1970. Foundations of the
PARAFAC procedure: Models and conditions
for an” explanatory” multi-modal factor anal-
ysis. UCLA Working Papers in Phonetics,
16(1):84.

John S. Justeson and Slava M. Katz. 1995. Techni-
cal terminology: some linguistic properties and
an algorithm for identification in text. Natural
Language Engineering, 1(1):9–27.

U. Kang, Evangelos Papalexakis, Abhay Harpale,
and Christos Faloutsos. 2012. Gigatensor: Scal-
ing tensor analysis up by 100 times - algorithms
and discoveries. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’12,
pages 316–324, New York, NY, USA. ACM.

Tamara G Kolda and Brett W Bader. 2009. Ten-
sor decompositions and applications. SIAM re-
view, 51(3):455–500.

Denis Krompaß, Maximilian Nickel, Xueyan Jiang,
and Volker Tresp. 2013. Non-negative tensor
factorization with rescal. Tensor Methods for
Machine Learning, ECML workshop.

Jey Han Lau, Karl Grieser, David Newman, and
Timothy Baldwin. 2011. Automatic labelling
of topic models. In Proceedings of the 49th An-
nual Meeting of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies - Volume 1, HLT ’11, pages 1536–1545,
Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Daniel D. Lee and H. Sebastian Seung. 2000. Al-
gorithms for non-negative matrix factorization.
In In NIPS, pages 556–562. MIT Press.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. 2014. The Stanford CoreNLP
natural language processing toolkit. In Proceed-
ings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demon-
strations, pages 55–60.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar,
J. Betteridge, A. Carlson, B. Dalvi, M. Gard-
ner, B. Kisiel, J. Krishnamurthy, N. Lao,
K. Mazaitis, T. Mohamed, N. Nakashole, E. Pla-
tanios, A. Ritter, M. Samadi, B. Settles,
R. Wang, D. Wijaya, A. Gupta, X. Chen,
A. Saparov, M. Greaves, and J. Welling. 2015.
Never-ending learning. In Proceedings of AAAI.

Thahir P. Mohamed, Estevam R. Hruschka, Jr.,
and Tom M. Mitchell. 2011. Discovering rela-
tions between noun categories. In Proceedings
of the Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’11, pages
1447–1455, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Brian Murphy, Partha Pratim Talukdar, and
Tom M Mitchell. 2012. Learning effective
and interpretable semantic models using non-
negative sparse embedding. In COLING, pages
1933–1950.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collec-
tive learning on multi-relational data. In Lise
Getoor and Tobias Scheffer, editors, Proceed-
ings of the 28th International Conference on
Machine Learning (ICML-11), ICML ’11, pages
809–816, New York, NY, USA, June. ACM.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing yago: Scalable ma-
chine learning for linked data. In Proceedings
of the 21st International Conference on World
Wide Web, WWW ’12, pages 271–280, New
York, NY, USA. ACM.

Evangelos E Papalexakis and Christos Faloutsos.
2015. Fast efficient and scalable core consistency
diagnostic for the parafac decomposition for big
sparse tensors. In Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International
Conference on.

Fabian M Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of WWW.

Paola Velardi, Stefano Faralli, and Roberto Nav-
igli. 2013. Ontolearn reloaded: A graph-based
algorithm for taxonomy induction. Computa-
tional Linguistics, 39(3):665–707.

