Inductive Framework for Multi-Aspect Streaming Tensor Completion with Side Information

Madhav Nimishakavi1 Bamdev Mishra2 Manish Gupta2 Partha Talukdar1

1Indian Institute of Science 2Microsoft
Outline

1. Introduction
2. Preliminaries
3. Side Information infused Incremental Tensor Analysis (SIITA)
4. Results
Introduction

- A **Tensor** is a multi-way extension of a matrix.

- Tensors are used for representing multidimensional data.
In practice, many multidimensional datasets are often incomplete.

Tensor Completion is the task of predicting or imputing missing values in a partially observed tensor.
However, in many real world applications the data is dynamic. Some examples include,

- Online recommendation systems.
- Social networks.
- ...

Dynamic Tensor Completion is the task of predicting missing values in a dynamically growing partially observed tensor.
Most of the existing works make an assumption that the tensor grows only in one mode.

This assumption is restrictive!
Recently Song et al. [4] proposed the more general Multi-aspect streaming tensor completion.

Figure: Multi-aspect streaming tensor sequence
Besides the tensor, additional side information data is also available in the form of matrices in many applications.

- For example, \(\text{movie} \times \text{genre} \) matrix for online movie recommendation etc.

- Incorporating the side information matrices into tensor completion can help achieve better results, particularly in sparse settings.
We propose a framework to handle the following sequences.

(a) Streaming sequence with side information

(b) Multi-aspect streaming sequence with side information
Definition (Multi-aspect streaming Tensor Sequence) [4]: A tensor sequence of N^{th}-order tensors $\{\mathbf{X}(t)\}$ is called a multi-aspect streaming tensor sequence if for any $t \in \mathbb{Z}^+$, $\mathbf{X}(t-1) \in \mathbb{R}^{l_1^{t-1} \times l_2^{t-1} \times \ldots \times l_N^{t-1}}$ is the sub-tensor of $\mathbf{X}(t) \in \mathbb{R}^{l_1^{t} \times l_2^{t} \times \ldots \times l_N^{t}}$, i.e.,

$$\mathbf{X}(t-1) \subseteq \mathbf{X}(t), \text{ where } l_i^{t-1} \leq l_i^{t}, \forall 1 \leq i \leq N.$$

Here, t increases with time, and $\mathbf{X}(t)$ is the snapshot tensor of this sequence at time t.
Definition (Multi-aspect streaming Tensor Sequence with Side Information): Given a time instance \(t \), let \(A_i^{(t)} \in \mathbb{R}^{l_i \times M_i} \) be a side information (SI) matrix corresponding to the \(i^{th} \) mode of \(\mathcal{X}^{(t)} \), we have,

\[
A_i^{(t)} = \begin{bmatrix} A_i^{(t-1)} & \Delta_i^{(t)} \end{bmatrix}, \text{ where } \Delta_i^{(t)} \in \mathbb{R}^{[l_i^{(t)} - l_i^{(t-1)}] \times M_i}.
\]

let the side information set \(\mathcal{A}^{(t)} = \{ A_1^{(t)}, \ldots, A_N^{(t)} \} \).

Given an \(N^{th} \)-order multi-aspect streaming tensor sequence \(\{ \mathcal{X}^{(t)} \} \), we define a multi-aspect streaming tensor sequence with side information as \(\{ (\mathcal{X}^{(t)}, \mathcal{A}^{(t)}) \} \).
Problem Definition: Given a multi-aspect streaming tensor sequence with side information \(\{(\mathcal{X}(t), \mathcal{A}(t))\}\), the goal is to predict the missing values in \(\mathcal{X}(t)\) by utilizing only entries in the relative complement \(\mathcal{X}(t) \setminus \mathcal{X}(t-1)\) and the available side information \(\mathcal{A}(t)\).
We propose Side Information infused Incremental Tensor Analysis (SIITA).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Streaming</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Multi-Aspect Streaming</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Side Information</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sparse Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table: Summary of different tensor streaming algorithms.
SIITA (cont.)

\[
\min_{G \in \mathbb{R}^{r_1 \times \cdots \times r_N}, \forall i \in [1:N]} \quad F(x(t), A(t), G, \{U_i\}_{i=1:N}),
\]

where

\[
F(x(t), A(t), G, \{U_i\}_{i=1:N}) = \left\| \hat{X}(t) - \hat{\mathcal{P}}_{\Omega}(G \times_1 A_1 \times_2 \cdots \times_N A_N U_1 \times_2 \cdots \times N) \right\|_F^2 + \lambda_g \|G\|_F^2 + \sum_{i=1}^{N} \lambda_i \|U_i\|_F^2.
\]
SIITA (cont.)

Since \(\{(\mathbf{x}^{(t-1)}, \mathbf{A}^{(t-1)})\} \subseteq \{(\mathbf{x}^{(t)}, \mathbf{A}^{(t)})\} \), we have

\[
F(\mathbf{x}^{(t)}, \mathbf{A}^{(t)}, \mathbf{G}^{(t-1)}, \{\mathbf{U}_i^{(t-1)}\}_{i=1:N}) = \]

\[
F(\mathbf{x}^{(t-1)}, \mathbf{A}^{(t-1)}, \mathbf{G}^{(t-1)}, \{\mathbf{U}_i^{(t-1)}\}_{i=1:N}) + \]

\[
F(\mathbf{x}^{(\Delta t)}, \mathbf{A}^{(\Delta t)}, \mathbf{G}^{(t-1)}, \{\mathbf{U}_i^{(t-1)}\}_{i=1:N})
\]

\[
\text{delta term between } t \text{ and } t-1
\]

(3)
We propose the following incremental update scheme,
\[
\begin{align*}
U_i^{(t)} &= U_i^{(t-1)} - \gamma \frac{\partial F(\Delta t)}{\partial U_i^{(t-1)}}, \quad i = 1 : N \\
G^{(t)} &= G^{(t-1)} - \gamma \frac{\partial F(\Delta t)}{\partial G^{(t-1)}},
\end{align*}
\]
where γ is the step size for the gradients. $R(\Delta t)$, needed for computing the gradients of $F(\Delta t)$, is given by
\[
R(\Delta t) = \mathcal{X}(\Delta t) - G^{(t-1)} \times_1 A_1^{(\Delta t)} U_1^{(t-1)} \times_2 \ldots \\
\times_N A_N^{(\Delta t)} U_N^{(t-1)}.
\]
Algorithm 1: Proposed SIITA Algorithm

Input: \(\{ \mathbf{X}^{(t)}, \mathbf{A}^{(t)} \}, \lambda_i, i = 1 : N, (r_1, \ldots, r_N) \)

Randomly initialize \(\mathbf{U}^{(0)}_i \in \mathbb{R}^{M_i \times r_i}, i = 1 : N \) and \(\mathbf{G}^{(0)} \in \mathbb{R}^{r_i \times \cdots \times r_N} \);

for \(t = 1, 2, \ldots \) do

\(\mathbf{U}^{(t)}_i := \mathbf{U}^{(t-1)}_i, i = 1 : N; \)
\(\mathbf{G}^{(t)} := \mathbf{G}^{(t-1)}; \)

for \(k = 1:K \) do

\{Inner iterations\}

Compute \(\mathbf{R}^{(\Delta t)} \) from (4) using \(\mathbf{U}^{(t)}_i, i = 1 : N \) and \(\mathbf{G}^{(t)}_k \);

Compute \(\frac{\partial F(\Delta t)}{\partial \mathbf{U}^{(t)}_i} \) for \(i = 1 : N \);

Update \(\mathbf{U}^{(t)}_i \) using \(\frac{\partial F(\Delta t)}{\partial \mathbf{U}^{(t)}_i} \) and \(\mathbf{U}^{(t-1)}_i \); \{Updating Factor Matrices\}

Compute \(\frac{\partial F(\Delta t)}{\partial \mathbf{G}^{(t)}_k} \);

Update \(\mathbf{G}^{(t)}_k \) using \(\mathbf{G}^{(t-1)}_k \) and \(\frac{\partial F(\Delta t)}{\partial \mathbf{G}^{(t)}_k} \); \{Updating Core Tensor\}

end

\(\mathbf{U}^{(t)}_i := \mathbf{U}^{(t)}_i K; \quad \mathbf{G}^{(t)} := \mathbf{G}^{(t)} K; \)

end

Return: \(\mathbf{U}^{(t)}_i, i = 1 : N, \mathbf{G}^{(t)}. \)
Results

<table>
<thead>
<tr>
<th></th>
<th>MovieLens 100K</th>
<th>YELP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modes</td>
<td>user × movie × week</td>
<td>user × business × year-month</td>
</tr>
<tr>
<td>Tensor Size</td>
<td>943 × 1682 × 31</td>
<td>1000 × 992 × 93</td>
</tr>
<tr>
<td>Starting size</td>
<td>19 × 34 × 2</td>
<td>20 × 20 × 2</td>
</tr>
<tr>
<td>Increment step</td>
<td>19, 34, 1</td>
<td>20, 20, 2</td>
</tr>
<tr>
<td>Sideinfo matrix</td>
<td>1682 (movie) × 19 (genre)</td>
<td>992 (business) × 56 (city)</td>
</tr>
</tbody>
</table>

Table: Summary of datasets used in the paper.
Multi-Aspect Streaming Setting

(a) MovieLens 100K (20% Missing)

(b) YELP (20% Missing)

Figure: Evolution of Test RMSE (lower is better) of MAST and SIITA with each time step.
Multi-Aspect Streaming Setting (cont.)

(a) MovieLens 100K (20% Missing)
(b) YELP (20% Missing)

Figure: Runtime comparison between MAST and SIITA at every time step.
Figure : Evolution of Test RMSE (lower is better) of TeCPSGD, OLSTEC and SIITA with each time step.
Streaming Setting (cont.)

Figure: Runtime comparison between TeCPSGD, OLSTEC and SIITA.

(b) MovieLens 100K (20% Missing)

(a) YELP (20% Missing)
Static Setting

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Missing%</th>
<th>Rank</th>
<th>AirCP</th>
<th>SIITA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MovieLens 100K</td>
<td>20%</td>
<td>3</td>
<td>3.351</td>
<td>1.534</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.687</td>
<td>1.678</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>3.797</td>
<td>2.791</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>3</td>
<td>3.303</td>
<td>1.580</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.711</td>
<td>1.585</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>3.894</td>
<td>2.449</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>3</td>
<td>3.883</td>
<td>1.554</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>3.997</td>
<td>1.654</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>3.791</td>
<td>3.979</td>
</tr>
</tbody>
</table>

Table: Mean Test RMSE (lower is better) across multiple train-test splits in the Batch setting.

Madhav Nimishakavi
CIKM 2018
Static Setting (cont.)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Missing%</th>
<th>Rank</th>
<th>AirCP</th>
<th>SIITA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1.094</td>
<td>1.052</td>
</tr>
<tr>
<td>YELP</td>
<td>20%</td>
<td>5</td>
<td>1.086</td>
<td>1.056</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1.077</td>
<td>1.181</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.096</td>
<td>1.097</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.095</td>
<td>1.059</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.719</td>
<td>1.599</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.219</td>
<td>1.199</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.118</td>
<td>1.156</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.210</td>
<td>2.153</td>
<td></td>
</tr>
</tbody>
</table>

Table: Mean Test RMSE (lower is better) across multiple train-test splits in the Batch setting.
Incorporating Nonnegative constraints into SIITA (NN-SIITA) is useful for unsupervised setting.

Metrics for evaluating the clusters mined by NN-SIITA

Let w_p items of top w items in a cluster belong to the same category, then

For a cluster p, $\textbf{Purity}(p) = \frac{w_p}{w},$

$\text{average-Purity} = \frac{1}{r_i} \sum_{p=1}^{r_i} \text{Purity}(p),$

where r_i is the number of clusters along mode-i.
Nonnegative Setting (cont.)

Figure: Average Purity (higher is better) of clusters learned by NN-SIITA and NN-SIITA (w/o SI) at every time step in the unsupervised setting.
Nonnegative Setting (cont.)

Figure: Evolution of mean average purity (higher is better) with w for NN-SIITA and NN-SIITA (w/o SI) for both MovieLens 100K and YELP datasets.

(a) MovieLens 100K

(b) YELP
Takeaways

- SIITA is the first ever algorithm that incorporates side information into dynamic tensor completion.
- SIITA can handle the more general Multi-aspect streaming setting.
- NN-SIITA is the first ever algorithm that incorporates Nonnegative constraints into dynamic tensor analysis.

Codes available at https://madhavcsa.github.io
Thank You!
Bibliography

Multi-aspect streaming tensor completion.